Extensions 1→N→G→Q→1 with N=C3 and Q=C22.47C24

Direct product G=NxQ with N=C3 and Q=C22.47C24
dρLabelID
C3xC22.47C2496C3xC2^2.47C2^4192,1442

Semidirect products G=N:Q with N=C3 and Q=C22.47C24
extensionφ:Q→Aut NdρLabelID
C3:1(C22.47C24) = C6.112+ 1+4φ: C22.47C24/C2xC4:C4C2 ⊆ Aut C396C3:1(C2^2.47C2^4)192,1073
C3:2(C22.47C24) = C42.95D6φ: C22.47C24/C42:C2C2 ⊆ Aut C396C3:2(C2^2.47C2^4)192,1089
C3:3(C22.47C24) = C42.104D6φ: C22.47C24/C4xD4C2 ⊆ Aut C396C3:3(C2^2.47C2^4)192,1099
C3:4(C22.47C24) = C42.113D6φ: C22.47C24/C4xD4C2 ⊆ Aut C396C3:4(C2^2.47C2^4)192,1117
C3:5(C22.47C24) = C42.119D6φ: C22.47C24/C4xD4C2 ⊆ Aut C396C3:5(C2^2.47C2^4)192,1124
C3:6(C22.47C24) = C6.342+ 1+4φ: C22.47C24/C4:D4C2 ⊆ Aut C396C3:6(C2^2.47C2^4)192,1160
C3:7(C22.47C24) = C6.432+ 1+4φ: C22.47C24/C4:D4C2 ⊆ Aut C396C3:7(C2^2.47C2^4)192,1173
C3:8(C22.47C24) = C6.1152+ 1+4φ: C22.47C24/C4:D4C2 ⊆ Aut C396C3:8(C2^2.47C2^4)192,1177
C3:9(C22.47C24) = C6.642+ 1+4φ: C22.47C24/C22.D4C2 ⊆ Aut C396C3:9(C2^2.47C2^4)192,1220
C3:10(C22.47C24) = C42.153D6φ: C22.47C24/C42.C2C2 ⊆ Aut C396C3:10(C2^2.47C2^4)192,1254
C3:11(C22.47C24) = C42.163D6φ: C22.47C24/C42:2C2C2 ⊆ Aut C396C3:11(C2^2.47C2^4)192,1268


׿
x
:
Z
F
o
wr
Q
<