Extensions 1→N→G→Q→1 with N=C3 and Q=C22.47C24

Direct product G=N×Q with N=C3 and Q=C22.47C24
dρLabelID
C3×C22.47C2496C3xC2^2.47C2^4192,1442

Semidirect products G=N:Q with N=C3 and Q=C22.47C24
extensionφ:Q→Aut NdρLabelID
C31(C22.47C24) = C6.112+ 1+4φ: C22.47C24/C2×C4⋊C4C2 ⊆ Aut C396C3:1(C2^2.47C2^4)192,1073
C32(C22.47C24) = C42.95D6φ: C22.47C24/C42⋊C2C2 ⊆ Aut C396C3:2(C2^2.47C2^4)192,1089
C33(C22.47C24) = C42.104D6φ: C22.47C24/C4×D4C2 ⊆ Aut C396C3:3(C2^2.47C2^4)192,1099
C34(C22.47C24) = C42.113D6φ: C22.47C24/C4×D4C2 ⊆ Aut C396C3:4(C2^2.47C2^4)192,1117
C35(C22.47C24) = C42.119D6φ: C22.47C24/C4×D4C2 ⊆ Aut C396C3:5(C2^2.47C2^4)192,1124
C36(C22.47C24) = C6.342+ 1+4φ: C22.47C24/C4⋊D4C2 ⊆ Aut C396C3:6(C2^2.47C2^4)192,1160
C37(C22.47C24) = C6.432+ 1+4φ: C22.47C24/C4⋊D4C2 ⊆ Aut C396C3:7(C2^2.47C2^4)192,1173
C38(C22.47C24) = C6.1152+ 1+4φ: C22.47C24/C4⋊D4C2 ⊆ Aut C396C3:8(C2^2.47C2^4)192,1177
C39(C22.47C24) = C6.642+ 1+4φ: C22.47C24/C22.D4C2 ⊆ Aut C396C3:9(C2^2.47C2^4)192,1220
C310(C22.47C24) = C42.153D6φ: C22.47C24/C42.C2C2 ⊆ Aut C396C3:10(C2^2.47C2^4)192,1254
C311(C22.47C24) = C42.163D6φ: C22.47C24/C422C2C2 ⊆ Aut C396C3:11(C2^2.47C2^4)192,1268


׿
×
𝔽